The electronic structures of the 8-hydroxyquinoline-aluminum (Alq(3))/Al2O3/Co interfaces were studied by photoelectron spectroscopy. A strong interface dipole was observed, which leads to a reduction in the electron injection barrier. The x-ray photoelectron spectroscopy spectra further indicate that the Al2O3 buffer layer prevents the chemical interaction between Alq(3) molecules and Co atoms. X-ray magnetic circular dichroism results demonstrate that a Co layer deposited on an Al2O3 buffered Alq(3) layer shows better magnetic ordering in the interface region than directly deposited Co, which suggests a better performance of spin valves with such a buffer layer. This is consistent with the recent results from [Dediu , Phys. Rev. B 78, 115203 (2008)].Original Publication:Yiqiang Zhan, Xianjie Liu, Elin Carlegrim, Fenghong Li, I Bergenti, P Graziosi, V Dediu and Mats Fahlman, The role of aluminum oxide buffer layer in organic spin-valves performance, 2009, APPLIED PHYSICS LETTERS, (94), 5, 053301.http://dx.doi.org/10.1063/1.3078274Copyright: American Institute of Physicshttp://www.aip.org/