The results of AC loss and interstrand resistance measurements for the short samples of 4 kA @ 4 T NbTi cable-in-conduit conductor (CICC) are described. The effect of real orientation of the NbTi strands in regard to the magnetic field applied transversally to the cable axis on the hysteresis losses, and the magnetic field dependence of the CICC effective time constant have been observed. No substantial effect to the interstrand resistance of the electromagnetic force, but the indications of the strand saturation and supercoupling circulation current effects have been found for a sample carrying a transport current. Mechanical hysteresis losses for this sample have been evaluated with new technique basing on the determination of the location of the conductor electric center. Dependence of these losses on the applied electromagnetic force ramp rate has been found.