The packaged terminal air conditioning with reheat (PTACR) system, as a commonly used dehumidification system, faces the problem of extra energy consumption in the deep-cooling and reheating processes. Therefore, different heat pump assisted hybrid solid desiccant cooling (HPDC) systems were proposed and their characteristics were investigated via EnergyPlus simulations. The system energy efficiency presents an upward trend with the increase in outdoor temperature and humidity. A high-humidity climate leads to the improvement of system performance. The dehumidification performance of the desiccant wheel in the HPDC system declines when outdoor humidity increases. Compared with the PTACR system, the energy consumption of the HPDC system in which the evaporator was placed upstream of the desiccant wheel is reduced by 36%, 66%, and 64%, respectively, under different high-humidity climates. The system maintained the indoor environment within the comfort zone, and eliminated the need for a heat source for desiccant regeneration. In conclusion, the HPDC system is an available alternative that considers both energy consumption and system performance. Placing the evaporator upstream of the desiccant wheel is more advantageous in high-temperature and high-humidity climates.