The management of plastic waste is considered to be among the major environmental problems that must be urgently addressed. For various reasons, recycling of plastic waste is not always feasible. In this study, a comprehensive evaluation of a mixture of plastic wastes (of the municipal solid wastes, MSW) as potential fuel is performed. Precisely, the combustion of plastic waste and the co-combustion of plastic waste-lignite blends are studied. Thermochemical characteristics, chemical composition, and kinetic parameters are measured/estimated. The environmental impact of these samples is also evaluated in terms of CO2 maximum potential emissions and ash production. In addition, the ash quality and its risk for slagging problems are explored. The random mixture of plastic waste revealed extremely high energy content (34 MJ/kg), which is higher than some well-established liquid fuels, e.g., ethanol and lower ash content (~5 wt.%), with lower activation energy and a higher maximum rate of mass loss (~9%/min) than lignite. Besides the much lower amount of produced ash, plastic waste, despite its higher carbon content, exhibits lower CO2 maximum potential emissions (~75 g CO2/MJ). The composition of the ash produced by plastic waste and lignite is different quantitatively but qualitatively is of the same type (similar medium risk ash). The superior characteristics of plastic waste are also evident in the blends. Provided that toxic emissions are captured, the utilization of plastic waste through combustion seems to be an attractive approach for simultaneous waste management and energy production, especially for plastic waste of limited recycling potential.