Due to water scarcity and the global trends in climate change, winning drinking water through desalination is increasingly becoming an option, especially using reverse osmosis (RO) membrane technology. Operating a reverse osmosis desalination plant is associated with several expenses and energy consumption that take a very large share. Several studies have shown that wind power incurs lower energy costs compared to other renewable energy sources, therefore, should be the first choice to be coupled to an RO desalination system to clean water using sustainable energy. Therefore, in this paper, we investigate the feasibility of driving an RO desalination system using wind power with and without pressure vessel energy storage and small scale energy recovery using Clark pump based on simulation models. The performance of both variants was compared with several scenarios of wind patterns. As expected buffering and energy recovery delivered higher water production and better water quality demonstrating the importance of an energy storage/recovery system for a wind-power-supplied desalination plant.