In response to global warming, researchers worldwide are actively investigating various techniques and institutional frameworks to reduce the emission of greenhouse gases. Despite numerous life cycle assessment (LCA) studies indicating that global warming effects due to lifetime energy consumption are the greatest in the building operation stage, the absence of a standard global warming potential (GWP) report based on building energy usage makes it difficult to examine realistic GWP reduction directions. In South Korea, energy data for numerous buildings were collected through the Building Energy Efficiency Certification (BEEC) for several years, with data from apartment buildings receiving the most attention. GWP emissions were evaluated using the data through Green Standard for Energy and Environmental Design LCA. Here, we developed a model for apartment buildings to assess mutual propriety for GWP emissions (E) and energy effective area ratio (RE) during building operation to support the reduction of GWP emissions caused by lifetime operational energy consumption resulting from planning and design. We collected apartment BEEC data and used them to calculate the energy effective area ratio and GWP emissions of each building, which were then classified by energy use and source. Linear regression analysis was performed between RE and E for each classification, and the derived regression equation was developed as a GWP assessment model for apartments. The applicability of the proposed model was examined through a case study, which confirmed that the model can be used to determine design directions for reducing GWP emissions for every energy in apartments.