Historically, there is little faith in particle tracking velocimetry (PTV) as a tool to make quantitative measurements of thermal counterflow in He II, since tracer particle motion is complicated by influences from the normal fluid, superfluid, and quantized vortex lines, or a combination thereof.Recently, we introduced a scheme for differentiating particles trapped on vortices (G1) from particles entrained by the normal fluid (G2). In this paper, we apply this scheme to demonstrate the utility of PTV for quantitative measurements of vortex dynamics in He II counterflow. We estimate ℓ, the mean vortex line spacing, using G2 velocity data, and c 2 , a parameter related to the mean curvature radius of vortices and energy dissipation in quantum turbulence, using G1 velocity data. We find that both estimations show good agreement with existing measurements that were obtained using traditional experimental methods. This is of particular consequence since these parameters likely vary in space, and PTV offers the advantage of spatial resolution. We also show a direct link between power-law tails in transverse particle velocity probability density functions (PDFs) and reconnection of vortex lines on which G1 particles are trapped.