2023
DOI: 10.48550/arxiv.2303.02827
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Energy stable and $L^2$ norm convergent BDF3 scheme for the Swift-Hohenberg equation

Abstract: A fully discrete implicit scheme is proposed for the Swift-Hohenberg model, combining the third-order backward differentiation formula (BDF3) for the time discretization and the second-order finite difference scheme for the space discretization. Applying the Brouwer fixed-point theorem and the positive definiteness of the convolution coefficients of BDF3, the presented numerical algorithm is proved to be uniquely solvable and unconditionally energy stable, further, the numerical solution is shown to be bounded… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?