power management, displays, energy, low-power, OLED, user-interface, mobilityThe utility of a mobile computer, such as a laptop, is largely constrained by battery life. The display stands out as a major consumer of battery energy, so reducing that consumption is desirable. In this paper, we motivate and study energy-adaptive display sub-systems that match display energy consumption to the functionality required by the workload/user. Through a detailed characterization of display usage patterns, we show that screen usage of a typical user is primarily associated with content that could be d isplayed in smaller and simpler displays with significantly lower energy use. We propose example energyadaptive designs that use emerging OLED displays and software optimizations that we call dark windows. Modeling the power benefits from this approach shows significant, though user-specific, energy benefits. Prototype implementations also show acceptability of the new user interfaces among users.
AbstractThe utility of a mobile computer, such as a laptop, is largely constrained by battery life. The display stands out as a major consumer of battery energy, so reducing that consumption is desirable. In this paper, we motivate and study energy-adaptive display sub-systems that match display energy consumption to the functionality required by the workload/user. Through a detailed characterization of display usage patterns, we show that screen usage of a typical user is primarily associated with content that could be displayed in smaller and simpler displays with significantly lower energy use. We propose example energy-adaptive designs that use emerging OLED displays and software optimizations that we call dark windows. Modeling the power benefits from this approach shows significant, though user-specific, energy benefits. Prototype implementations also show acceptability of the new user interfaces among users.