2020
DOI: 10.1039/c9sm02171j
|View full text |Cite
|
Sign up to set email alerts
|

Energy transport in glasses

Abstract: The temperature dependence of the thermal conductivity is linked to the nature of the energy transport at a frequency ω, which is quantified by thermal diffusivity d(ω). Here we study d(ω) for a poorly annealed glass and a highly stable glass prepared using the swap Monte Carlo algorithm. To calculate d(ω), we excite wave packets and find that the energy moves diffusively for high frequencies up to a maximum frequency, beyond which the energy stays localized. At intermediate frequencies, we find a linear incre… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
6
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
2

Relationship

3
5

Authors

Journals

citations
Cited by 8 publications
(6 citation statements)
references
References 55 publications
0
6
0
Order By: Relevance
“…For glasses, there are additional low-frequency modes that result in a peak in the reduced total density of states D(ω)/ω d−1 , which is referred to as the boson peak [8][9][10][11]. Understanding the nature of the additional modes provides insight into the physics behind the anomalous properties of glasses [12][13][14][15][16][17][18][19][20].…”
mentioning
confidence: 99%
“…For glasses, there are additional low-frequency modes that result in a peak in the reduced total density of states D(ω)/ω d−1 , which is referred to as the boson peak [8][9][10][11]. Understanding the nature of the additional modes provides insight into the physics behind the anomalous properties of glasses [12][13][14][15][16][17][18][19][20].…”
mentioning
confidence: 99%
“…Due to the need of a very large amount of computation, it is now impossible for us to determine precisely how D(ω) scales with ω at very low frequencies below the first sound mode, but future work may be able to resolve this. In addition, it would be also necessary to check whether increasing the glass stability spectacularly may change our major conclusion since the glass stability matters a lot in modulating various properties of glasses [6,15,18,39,48,[55][56][57][58][59][60].…”
Section: Conclusion and Discussionmentioning
confidence: 99%
“…These excess modes, termed usually nonphononic or quasilocalized modes [9], could be observed in a broad class of glasses, and hence has become one universal hallmark of glasses. Importantly, it has been suggested explicitly that these excess modes could also give some insight into the understanding of glasses' other elusive properties [9][10][11][12][13][14][15][16][17][18], e.g., the mechanical and thermal properties of glasses, and the dynamics of supercooled liquids.…”
Section: Introductionmentioning
confidence: 99%
“…For instance, at temperatures near 3 K-10 K in 3D glasses, the reduced specific heat C(T )/T 3 exhibits a peak that is suggested to originate from the boson peak referring to the maximum in the reduced density of states D(ω)/ω 2 . Additionally, numerous studies [9][10][11][12][13][14][15][16][17][18][19][20] over the past few decades have already established compelling connections between properties of excess modes and those of glasses and even glass-forming liquids.…”
Section: Introductionmentioning
confidence: 99%