Marine finfish landings in Cuba have decreased during the last 30 years. However, in Cuba’s most productive fishing region, certain species, including rays, herrings, and snappers, have had increased landings over the past decade. Despite these anomalies, no comprehensive analysis of the interactions among multispecies landing dynamics, environmental factors, and fishing efforts has been carried out. This study estimates the dynamics of multispecies finfish landings between 1981 and 2017 on the southeastern coast of Cuba. A log-normal generalized additive model (GAM) was fit to evaluate the effects of various environmental and effort-related variables on the total landings. During the period analyzed, the finfish landings and fishing effort decreased by 46% and over 80%, respectively. Despite concerns about overfishing, landings per unit of effort (LPUE) increased by 2.8 times. The total fish landings were significantly related to changes in the fishing effort, coastal vegetation, rainfall, chlorophyll-a, and the Southern Oscillation Index (SOI). This study highlights the changing relationship between the landings and fishing effort, suggesting that LPUE may not accurately reflect true stock abundance. The findings of this study will assist in integrating the dynamics of finfish species, ecosystem status, and management actions for Cuba’s most productive fishing zone.