We study properties of Engel elements in weakly branch groups, lying in the group of automorphisms of a spherically homogeneous rooted tree. More precisely, we prove that the set of bounded left Engel elements is always trivial in weakly branch groups. In the case of branch groups, the existence of non-trivial left Engel elements implies that these are all pelements and that the group is virtually a p-group (and so periodic) for some prime p. We also show that the set of right Engel elements of a weakly branch group is trivial under a relatively mild condition. Also, we apply these results to well-known families of weakly branch groups, like the multi-GGS groups.2010 Mathematics Subject Classification. 20E08, 20F45.