2020
DOI: 10.5007/1981-1322.2020.e73690
|View full text |Cite
|
Sign up to set email alerts
|

Engenharia Didática (ED): análises preliminares e a priori para a equação diferencial de Claireaut

Abstract: O estudo da teoria das equações diferenciais ordinárias está presente em vários cursos de graduação em Matemática no Brasil. A despeito do interesse desenvolvido pelos didatas franceses atentos ao seu ensino e aprendizagem, consta-se que muitos dos entraves registrados ainda consubstanciam uma situação que torna indefectível uma abordagem ortodoxa no “lócus” acadêmico. Diante dessa problemática, este trabalho apresenta, descreve e postula, do ponto de vista conceitual e teórico, elementos aplicáveis e reprodut… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 13 publications
0
3
0
Order By: Relevance
“…However, its respective characteristic equation may be of higher orders. Then, we will carry out a brief historical study (Alves, 2017) referring to recurring and linear sequences, having as precursor the Fibonacci sequence, being, therefore, of second order.…”
Section: Recurrent and Linear Sequencesmentioning
confidence: 99%
See 2 more Smart Citations
“…However, its respective characteristic equation may be of higher orders. Then, we will carry out a brief historical study (Alves, 2017) referring to recurring and linear sequences, having as precursor the Fibonacci sequence, being, therefore, of second order.…”
Section: Recurrent and Linear Sequencesmentioning
confidence: 99%
“…Created by the German mathematician Ernest Erich Jacobsthal , these numbers belong to the second order sequence (Alves, 2017), with their respective recurrence formula given by the relation:𝐽 𝑛 = 𝐽 𝑛−1 + 2𝐽 𝑛−2 , 𝑛 ≥ 2 , with the initial numerical values indicated by 𝐽 0 = 0, 𝐽 1 = 1.…”
Section: The Jacobsthal Sequencementioning
confidence: 99%
See 1 more Smart Citation