Engineered Sodium Metal Anodes: Tackling Sulfur‐Derivative Challenges for Advanced Sodium–Sulfur Batteries
Qing Zhao,
Tiehan Mei,
Yi Li
et al.
Abstract:The development of room temperature sodium–sulfur (RT Na─S) batteries has been significantly constrained by the dissolution/shuttle of sulfur‐derivatives and the instability of sodium anode. This study presents an engineered sodium metal anode (NBS), featuring sodium bromide (NaBr) along with sodiophilic components like tin metal (Sn) and sodium‐tin (Na─Sn) alloy. This configuration exhibits high plating/stripping reversibility with minimal nucleation/growth barriers in an ester‐based electrolyte, allowing sta… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.