2024
DOI: 10.1021/acsestwater.3c00516
|View full text |Cite
|
Sign up to set email alerts
|

Engineered Sorbents for Selective Uranium Sequestration from Seawater

Bhupendra Kumar Singh,
Muhammad Asim,
Zarina Salkenova
et al.

Abstract: The sustainable energy supply to the global community remains a great challenge due to the mounting incessant energy demand and environmental concerns associated with fossil fuel-based energy. As per the International Atomic Energy Agency (IAEA), nuclear power will be the only reliable sustainable energy source in the future, and there will be a high demand for uranium (U). Therefore, the exploitation of U from seawater is essential to supply nuclear energy for thousands of years globally. Herein, we discuss s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 103 publications
0
1
0
Order By: Relevance
“…Uranium (U) present in wastewaters produced via its mining, processing, and use in the nuclear fuel cycle is a significant environmental concern , with a range of potential ecotoxicological effects identified. , This includes the presence of U in the remediation of contaminated solutes produced during various processes associated with the nuclear fuel cycle, including U-mining, effluents from spent nuclear fuel reprocessing, nuclear fuel storage facilities, , U enrichment sites that are subject to decommissioning, , or cleanup procedures following the nuclear accidents. , To address these challenges, and especially when other radionuclides including transuranics such as plutonium and americium isotopes, and fission products including 90 Sr and 137 Cs may also be present, several studies have investigated U capture using various materials including layered double hydroxides (LDHs) formed in situ or prefabricated LDHs as adsorbents. , …”
Section: Introductionmentioning
confidence: 99%
“…Uranium (U) present in wastewaters produced via its mining, processing, and use in the nuclear fuel cycle is a significant environmental concern , with a range of potential ecotoxicological effects identified. , This includes the presence of U in the remediation of contaminated solutes produced during various processes associated with the nuclear fuel cycle, including U-mining, effluents from spent nuclear fuel reprocessing, nuclear fuel storage facilities, , U enrichment sites that are subject to decommissioning, , or cleanup procedures following the nuclear accidents. , To address these challenges, and especially when other radionuclides including transuranics such as plutonium and americium isotopes, and fission products including 90 Sr and 137 Cs may also be present, several studies have investigated U capture using various materials including layered double hydroxides (LDHs) formed in situ or prefabricated LDHs as adsorbents. , …”
Section: Introductionmentioning
confidence: 99%