DNA nanotechnology is leading the field of in vitro molecular-scale device engineering, accumulating to a dazzling array of applications from zeolite-like catalysts to bio-imaging. However, while DNA nanostructures' function is robust under in vitro settings, their implementation in real-world conditions requires overcoming their rapid degradation and subsequent loss of function. Viruses are incredibly sophisticated supramolecular assemblies, able to protect their nucleic acid content in the relatively inhospitable biological environment. Inspired by this natural ability, we engineered both in vitro and in vivo technologies, enabling the encapsulation and protection of functional DNA nanostructures inside MS2 bacteriophage virus-like particles (VLPs). We demonstrate the ssDNA-VLPs nanocomposites (NCs) abilities to encapsulate single-stranded-DNA (ssDNA) of an unprecedented variety of sizes (200–1500 nucleotides (nt)), sequences, and structures while retaining their functionality. Moreover, by exposing these NCs to hostile biological conditions, such as human blood serum, we exhibit that the VLPs serves as an excellent protective shell. To the best of our knowledge, these engineered NCs pose key properties that are yet unattainable by current fabrication methods.