Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a Yarrowia lipolytica strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.