We present a collection of methods to simulate entangled dynamics of open quantum systems governed by the Lindblad master equation with tensor network methods. Tensor network methods using matrix product states have been proven very useful to simulate many-body quantum systems and have driven many innovations in research. Since the matrix product state design is tailored for closed one-dimensional systems governed by the Schrödinger equation, the next step for many-body quantum dynamics is the simulation of one-dimensional open quantum systems. We review the three dominant approaches to the simulation of open quantum systems via the Lindblad master equation: quantum trajectories, matrix product density operators, and locally purified tensor networks. Selected examples guide possible applications of the methods and serve moreover as a benchmark between the techniques. These examples include the finite temperature states of the transverse quantum Ising model, the dynamics of an exciton traveling under the influence of spontaneous emission and dephasing, and a double-well potential simulated with the Bose-Hubbard model including dephasing. We analyze which approach is favorable leading to the conclusion that a complete set of all three methods is most beneficial, pushing the limits of different scenarios. The convergence studies using analytical results for macroscopic variables and exact diagonalization methods as comparison, show, for example, that matrix product density operators are favorable for the exciton problem in our study. All three methods access the same library, i.e., the software package Open Source Matrix Product States, allowing us to have a meaningful comparison between the different approaches based on the selected examples. For example, tensor operations are accessed from the same subroutines and with the same optimization eliminating one possible bias in a comparison of such numerical methods.
CONTENTS