The past decades have witnessed great advances in controllable synthesis, structure determination, and property investigation of metal nanoclusters. Selenolated nanoclusters, a special branch in the nanocluster family, have attracted great interest in these years. The electronegativity and atomic radius of selenium is different from sulfur, and thus the selenolated nanoclusters are anticipated to display different electronic/geometric structures and distinct chemical/physical properties relative to their thiolated analogues. This review covers the syntheses, structures, and properties of selenolated nanoclusters (including Au, Ag, Cu, and alloy nanoclusters). Ligand effects (between SeR and SR) on nanocluster properties, including optical absorption, stability, and electrochemical properties, are disclosed as well. At the end of the review, a scope for improvements and future perspectives of selenolated nanoclusters is highlighted. The review hopefully opens up new horizons for cluster scientists to synthesize more selenolated nanoclusters with novel structures and properties. This review is based on publications available up to May 2019.