Depletion of oil reserves and the associated effects on climate change have prompted a re-examination of the use of plant biomass as a sustainable source of organic carbon for the large-scale production of chemicals and materials. While initial emphasis has been placed on biofuel production from edible plant sugars, the drive to reduce the competition between crop usage for food and non-food applications has prompted massive research efforts to access the less digestible saccharides in cell walls (lignocellulosics). This in turn has prompted an examination of the use of other plant-derived metabolites for the production of chemicals spanning the high-value speciality sectors through to platform intermediates required for bulk production. The associated science of biorefining, whereby all plant biomass can be used efficiently to derive such chemicals, is now rapidly developing around the world. However, it is clear that the heterogeneity and distribution of organic carbon between valuable products and waste streams are suboptimal. As an alternative, we now propose the use of synthetic biology approaches to 're-construct' plant feedstocks for optimal processing of biomass for non-food applications. Promising themes identified include re-engineering polysaccharides, deriving artificial organelles, and the reprogramming of plant signalling and secondary metabolism.