SUMMARY
The human gastrointestinal tract is resident to a vastly diverse microbial consortium that co-exists through strict rules of invasion, dominance, resilience and succession. While some members possess stronger capabilities for survival than others, each one retains a genome characteristic of their bacterial denomination which subsequently determines survival and ultimately the composition of a human gut microbiome. Collective evidence advocates the concept of gut microbiota modulation via dietary compounds, with or without nutraceutical supplementation. However, consistent reports of strong individuality in responsiveness suggest that initial composition of host microbiota mediates the effect of nutrition modulation. There is also a strong potential for the interaction between mind and microbe to influence responsiveness, although mechanistic understanding of these complex exchanges remains in its infancy at best. Synthetic stool for FMT is a next-generation microbiome-therapy shown effective in treating C.difficile [417] which could provide a feasible alternative to current methods for patients with IBD. Nevertheless, studies investigating optimum timing for FMT administration are essential.
Animal and human studies are only starting to highlight the Pandora of interactions that endure between members of gut microbiome, their associated metabolites, dietary compounds, as well as host neurological and immune systems, all of which characteristic to each individual. Advanced research technologies have excelled the scientific evidence in support of CAM and toward generating NG-CAM systems designed for treatment of specific disease states, such as IBD. While the majority of envisioned NG-CAM strategies presently exist in their experimental and discovery phases, many show promise for future clinical application.