Yarrowia
lipolytica
is a novel microbial chassis
to upgrade renewable low-cost carbon feedstocks to high-value commodity
chemicals and natural products. In this work, we systematically characterized
and removed the rate-limiting steps of the shikimate pathway and achieved
de novo
synthesis of five aromatic chemicals in
Y. lipolytica
. We determined that eliminating amino
acids formation and engineering feedback-insensitive DAHP synthases
are critical steps to mitigate precursor competition and relieve the
feedback regulation of the shikimate pathway. Further overexpression
of heterologous phosphoketolase and deletion of pyruvate kinase provided
a sustained metabolic driving force that channels E4P (erythrose 4-phosphate)
and PEP (phosphoenolpyruvate) precursors through the shikimate pathway.
Precursor competing pathways and byproduct formation pathways were
also blocked by inactivating chromosomal genes. To demonstrate the
utility of our engineered chassis strain, three natural products,
2-phenylethanol (2-PE),
p
-coumaric acid, and violacein,
which were derived from phenylalanine, tyrosine, and tryptophan, respectively,
were chosen to test the chassis performance. We obtained 2426.22 ±
48.33 mg/L of 2-PE, 593.53 ± 28.75 mg/L of
p
-coumaric acid, 12.67 ± 2.23 mg/L of resveratrol, 366.30 ±
28.99 mg/L of violacein, and 55.12 ± 2.81 mg/L of deoxyviolacein
from glucose in a shake flask. The 2-PE production represents a 286-fold
increase over the initial strain (8.48 ± 0.50 mg/L). Specifically,
we obtained the highest 2-PE, violacein, and deoxyviolacein titer
ever reported from the
de novo
shikimate pathway
in yeast. These results set up a new stage of engineering
Y. lipolytica
as a sustainable biorefinery chassis
strain for
de novo
synthesis of aromatic compounds
with economic values.