Secretion is a fundamental cellular process involving the regulated release of intracellular products from cells. Physiological functions such as neurotransmission, or the release of hormones and digestive enzymes, are all governed by cell secretion. Anomalies in the processes involved in secretion contribute to the development and progression of diseases such as diabetes and other hormonal disorders. To unravel the mechanisms that govern such diseases, it is essential to understand how hormones, growth factors and neurotransmitters are synthesized and processed, and how their signals are recognized, amplified and transmitted by intracellular signaling pathways in the target cells. Here, we discuss diverse aspects of the detailed mechanisms involved in secretion based on mathematical models. The models range from stochastic ones describing the trafficking of secretory vesicles to deterministic ones investigating the regulation of cellular processes that underlie hormonal secretion. In all cases, the models are closely related to experimental results and suggest theoretical predictions for the secretion mechanisms.