The photonic crystal structure has attracted many attentions due to its ability to confine light. In this paper, we present our study on an improved Smith-Purcell radiation from a simple metal photonic crystal excited by moving electrons. Different from the wide-band Smith-Purcell radiation from a single metal grating, the results show that the injected electrons could induce more dipole oscillations inside the multi-grating structure, and it leads to the enhancement of the radiation intensity. In addition, there are strong resonances in metal multi-grating structure, and the resonance characteristics may narrow the radiation band, which leads to a radiation with an obvious peak in spectrum. Therefore, the multi-grating structure has the ability to enhance the radiation intensity and shape the radiation frequency band. By optimizing the structure parameters, coherent and tunable Smith-Purcell radiation can be realized, and it provides a potential way to develop band-controllable light or THz radiation source.