Objective—
Thrombomodulin (TM), a glycoprotein constitutively expressed in the endothelium, is well known for its anticoagulant and anti-inflammatory properties. Paradoxically, we recently found that monocytic membrane-bound TM (ie, endogenous TM expression in monocytes) triggers lipopolysaccharide- and gram-negative bacteria–induced inflammatory responses. However, the significance of membrane-bound TM in chronic sterile vascular inflammation and the development of abdominal aortic aneurysm (AAA) remains undetermined.
Approach and Results—
Implicating a potential role for membrane-bound TM in AAA, we found that TM signals were predominantly localized to macrophages and vascular smooth muscle cells in human aneurysm specimens. Characterization of the CaCl
2
-induced AAA in mice revealed that during aneurysm development, TM expression was mainly localized in infiltrating macrophages and vascular smooth muscle cells. To investigate the function of membrane-bound TM in vivo, transgenic mice with myeloid- (LysMcre/TM
flox/flox
) and vascular smooth muscle cell–specific (SM22-cre
tg
/TM
flox/flox
) TM ablation and their respective wild-type controls (TM
flox/flox
and SM22-cre
tg
/TM
+/+
) were generated. In the mouse CaCl
2
-induced AAA model, deficiency of myeloid TM, but not vascular smooth muscle cell TM, inhibited macrophage accumulation, attenuated proinflammatory cytokine and matrix metalloproteinase-9 production, and finally mitigated elastin destruction and aortic dilatation. In vitro TM-deficient monocytes/macrophages, versus TM wild-type counterparts, exhibited attenuation of proinflammatory mediator expression, adhesion to endothelial cells, and generation of reactive oxygen species. Consistently, myeloid TM–deficient hyperlipidemic mice (ApoE
−/−
/LysMcre/TM
flox/flox
) were resistant to AAA formation induced by angiotensin II infusion, along with reduced macrophage infiltration, suppressed matrix metalloproteinase activities, and diminished oxidative stress.
Conclusions—
Membrane-bound TM in macrophages plays an essential role in the development of AAA by enhancing proinflammatory mediator elaboration, macrophage recruitment, and oxidative stress.