Metal−organic frameworks (MOFs) have attracted tremendous interest because of their tunable structures, functionalities, and physiochemical properties. The nearly infinite combinations of metal nodes and organic linkers have led to the synthesis of over 100,000 experimental MOFs and the construction of millions of hypothetical counterparts. It is intractable to identify the best candidates in the immense chemical space of MOFs for applications via conventional trial-to-error experiments or bruteforce simulations. Over the past several years, machine learning (ML) has substantially transformed the way of MOF discovery, design, and synthesis. Driven by the abundant data from experiments or simulations, ML can not only efficiently and accurately predict MOF properties but also quantitatively derive structure−property relationships for rational design and screening. In this Perspective, we summarize recent achievements in leveraging ML for MOFs from the aspects of data acquisition, featurization, model training, and applications. Then, current challenges and new opportunities are discussed for the future exploration of ML to accelerate the development of new MOFs in this vibrant field.