Various pretreatment methods have been combined and employed for maximizing the solubilization of waste-activated sludge (WAS). However, the question “by changing the series of applied combined pretreatments (CPs), can the solubilization efficiency of WAS be affected?” has never been addressed. In this study, firstly, thermal (T), alkaline (A), and ultrasonic (U) pretreatments were individually applied at broad strengths (T = 80–120 °C for 30 min, A = pH 9–12, and U = 5–60 min at 300 W). Then, pretreatment conditions that caused similar solubilization (13.0%) (120 °C, pH 11, and 30 min for T, A, and U, respectively), were adopted for CP with reverse sequences of T&A, U&A, and T&U. A similar disintegration degree was observed in U→A and A→U, while a meaningful difference was found in T&A and T&U: T→A (28.3%), A→T (42.9%), T→U (22.9%), and U→T (27.1%). The difference in pretreatment series also affected the characteristics of soluble matters, which was analyzed by excitation emission matrix and molecular weight distribution. Due to these differences, the highest methane yield of 68.8% (based on (chemical oxygen demand) CODinput) was achieved at A→T, compared to T→A (62.3%). Our results suggested a simple strategy for increasing solubilization, at the same expense of energy, which might be beneficial in the following treatment process, such as dewatering and transportation.