Background: Opioids have been identified by the World Health Organization to be ‘indispensable for the relief of pain and suffering’. Side-effects, such as nausea, vomiting, postoperative delirium, and effects on breathing, of opioids have been well investigated; however, the influence of opioids on monocyte-endothelial adherence has never been reported. Therefore, we explored the effects of representative opioids, fentanyl, sufentanil, and remifentanil, on monocyte-endothelial adherence and the underlying mechanisms. Methods: We built a cell adhesion model with U937 monocytes and human umbilical vein endothelial cells (HUVECs). Two kinds of connexin43 (Cx43) channel inhibitors, 18-α-GA and Gap 27, were used to alter Cx43 channel function in U937 monocytes and HUVECs, respectively, to determine the effects of Cx43 channels on U937-HUVEC adhesion. Subsequently, the effects of fentanyl, sufentanil and remifentanil on Cx43 channel function and U937-HUVEC adhesion were explored. Results: When fentanyl, sufentanil and remifentanil acted on monocytes or endothelial cells, their effects on monocyte-endothelial adherence differed. When acting on U937 monocytes, sufentanil significantly increased U937-HUVEC adhesion via the inhibition of Cx43 channels in U937 monocytes (the mechanism was related to Cx43 channels modulating ATP release), while fentanyl and remifentanil did not have these influences. Although sufentanil could also inhibit Cx43 channel function in HUVECs, it had no effect on ATP release from HUVECs or U937-HUVECs adhesion. Conclusions: We demonstrated that sufentanil application increases monocyte-endothelial adherence via the inhibition of ATP release mediated by Cx43 channels in monocytes. This side-effect of sufentanil should be considered seriously by clinicians.