Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose of Review In countries such the USA, Iran, and Turkey, pistachio nut is considered one of the most economically valuable agricultural products. Pistachio production and related dehulling processes generate a large quantity of organic waste, containing green hull, cluster woody part, shells, and leaves. The inadequate conventional management of such wastes calls for sustainable and economical strategies not only to enhance resource efficiency but also to create value. Recent Findings Pistachio residues have a high content of total extractives and essential oils and a considerable amount of phenolic compounds that explain their good antioxidant activities and other potential human health benefits. Furthermore, considering the generation volume (about 660,000 tons) and lignocellulosic structure, pistachio residues can also be sustainably used to produce value-added products, such as biofuels, phytochemicals, activated carbon, and other potential bioproducts such as filamentous fungi as protein enriched biomass, single-cell protein (SCP), and volatile fatty acids. In general, recent studies have not comprehensively investigated all value-added potential products. Summary This review provides a thourough insight into the present pistachio processing industries, and pistachio waste chemical composition and characteristics. Furthermore, the applications of pistachio residues as a renewable source for the production of potential value-added products by various thermochemical (pyrolysis, gasification, and liquefaction), physicochemical (solvent extraction, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and extraction by pressurized liquids (PLE)), and biological (anaerobic digestion (AD) and fermentation (solid-state and submerged)) processes are presented including an analysis of the advantages and disadvantages of such methods. In this regard, production of new products such as edible filamentous fungi and antioxidant, and their market appeal has been briefly considered.
Purpose of Review In countries such the USA, Iran, and Turkey, pistachio nut is considered one of the most economically valuable agricultural products. Pistachio production and related dehulling processes generate a large quantity of organic waste, containing green hull, cluster woody part, shells, and leaves. The inadequate conventional management of such wastes calls for sustainable and economical strategies not only to enhance resource efficiency but also to create value. Recent Findings Pistachio residues have a high content of total extractives and essential oils and a considerable amount of phenolic compounds that explain their good antioxidant activities and other potential human health benefits. Furthermore, considering the generation volume (about 660,000 tons) and lignocellulosic structure, pistachio residues can also be sustainably used to produce value-added products, such as biofuels, phytochemicals, activated carbon, and other potential bioproducts such as filamentous fungi as protein enriched biomass, single-cell protein (SCP), and volatile fatty acids. In general, recent studies have not comprehensively investigated all value-added potential products. Summary This review provides a thourough insight into the present pistachio processing industries, and pistachio waste chemical composition and characteristics. Furthermore, the applications of pistachio residues as a renewable source for the production of potential value-added products by various thermochemical (pyrolysis, gasification, and liquefaction), physicochemical (solvent extraction, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and extraction by pressurized liquids (PLE)), and biological (anaerobic digestion (AD) and fermentation (solid-state and submerged)) processes are presented including an analysis of the advantages and disadvantages of such methods. In this regard, production of new products such as edible filamentous fungi and antioxidant, and their market appeal has been briefly considered.
This comprehensive review aims to explore and elucidate the pivotal role of biotechnology in biofuel production, specifically focusing on its contribution to enhancing sustainability, efficiency, and productivity in the energy sector. By examining various biotechnological approaches like genetic engineering, metabolic engineering, and synthetic biology, it seeks to provide insights into effectively harnessing biofuel generation processes, including the integration of machine learning and life cycle assessment for microalgae cultivation and harvesting. Additionally, it sheds light on the multifaceted implications surrounding biofuel production and consumption, addressing technological, ethical, social, and economic considerations. Through critical analysis of the advantages and challenges associated with biotechnology-driven biofuel development, it offers a balanced perspective on the true potential of biofuels as a viable, sustainable, and equitable energy source for the future. This examination provides a holistic analysis of the symbiotic relationship between biotechnology and biofuels, highlighting how advancements in biotechnological techniques can pave the way for a more sustainable and resilient energy future. By addressing both the promises and limitations of biotechnology in this context, it aims to contribute to informed decision-making and policy formulation to drive the transition toward a cleaner and more equitable energy paradigm. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.