Aims There is a lack of diagnostic and therapeutic options for patients with atrial cardiomyopathy and paroxysmal atrial fibrillation. Interestingly, an abnormal P-wave terminal force in electrocardiogram lead V 1 (PTFV 1 ) has been associated with atrial cardiomyopathy, but this association is poorly understood. We investigated PTFV 1 as a marker for functional, electrical, and structural atrial remodelling. Methods and results Fifty-six patients with acute myocardial infarction and 13 kidney donors as control cohort prospectively underwent cardiac magnetic resonance imaging to evaluate the association between PTFV 1 and functional remodelling (atrial strain). To further investigate underlying pathomechanisms, right atrial appendage biopsies were collected from 32 patients undergoing elective coronary artery bypass grafting. PTFV 1 was assessed as the product of negative P-wave amplitude and duration in lead V 1 and defined as abnormal if ≥4000 ms*μV. Activity of cardiac Ca/calmodulin-dependent protein kinase II (CaMKII) was determined by a specific HDAC4 pull-down assay as a surrogate for electrical remodelling. Atrial fibrosis was quantified using Masson's trichrome staining as a measure for structural remodelling. Multivariate regression analyses were performed to account for potential confounders. A total of 16/56 (29%) of patients with acute myocardial infarction, 3/13 (23%) of kidney donors, and 15/32 (47%) of patients undergoing coronary artery bypass grafting showed an abnormal PTFV 1 . In patients with acute myocardial infarction, left atrial (LA) strain was significantly reduced in the subgroup with an abnormal