In some aspects, the potential of metal–organic framework (MOF) materials as heterogeneous catalysts has been realized, at least in an academic context. However, one of their most promising catalytic properties, that is, the presence of open metal sites, is far from understood properly. In this work, a series of M–MOF‐74 (M=Mn, Co, Ni, Cu, Zn) materials, prepared under sustainable conditions, was tested systematically in the oxidation of cyclohexene, which can proceed by either radical or epoxidation routes. Under the optimized reaction conditions, the radical route is spontaneous to some extent and it is enhanced in the presence of any M–MOF‐74 that has a metal with a redox character but not Zn. However, the epoxidation of cyclohexene is also promoted by a redox catalyst in such a way that the conversion correlates qualitatively with the redox potential of the metal. Thus, for the first time, a chemical property of M is correlated with the catalytic activity of the M–MOF‐74 family.