The two-electron oxygen reduction reaction (2e−ORR) pathway electrochemical synthesis to H2O2 has the advantages of low investment and environmental protection and is considered to be a promising green method. Herein, the oxidized Mo2TiC2 MXene (O-Mo2TiC2) was successfully synthesized by a facile hydrothermal method as an electrocatalyst in electrocatalytic H2O2 production. The O-Mo2TiC2 achieved the 90% of H2O2 selectivity and 0.72 V vs. RHE of the onset potential. Moreover, O-Mo2TiC2 showed high charge transfer ability and long-term stable working ability of 40 h. This significantly enhanced electrocatalytic H2O2 production capacity is assigned the oxidation treatment of Mo2TiC2 MXene to generate more oxygen-containing groups in O-Mo2TiC2. This work provides a promising catalyst candidate for the electrochemical synthesis of H2O2.