Carbon nanomaterials were synthesized in situ on bulk 316L stainless steel, pure cobalt, and pure nickel by hybrid surface mechanical attrition treatment (SMAT). The microstructures of the treated samples and the resulted carbon nanomaterials were investigated by SEM and TEM characterizations. Different substrates resulted in different morphologies of products. The diameter of carbon nanomaterials is related to the size of the nanograins on the surface layer of substrates. The possible growth mechanism was discussed. Effects of the main parameters of the synthesis, including the carbon source and gas reactant composition, hydrogen, and the reaction temperature, were studied. Using hybrid SMAT is proved to be an effective way to synthesize carbon nanomaterials in situ on surfaces of metallic materials.
Materials and MethodsSamples were stainless steel (AISI 316L), pure cobalt (purity 99.9%), and pure nickel (purity 99.9%) plates. The plates were 20 mm in diameter and 1 mm in thickness and were firstly subjected to the SMAT process. Details of SMAT can be found in the previous work [15,16]. After SMAT, a nanocrystalline surface layer was achieved. During SMAT