ReuseThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
AbstractThe problem of CO2 mitigation on a small and medium scale can be resolved by developing a combined system of CO2 capture and its consecutive conversion into valuable products. The first stage of CO2 looping, however, should be reliable, effective and easy to control and radiofrequency heating, as a new advanced technology, can be used to improve the process.CO2 absorption and desorption RF units can be installed within power plants and powered during the periods of low energy demand thus stabilizing the electrical grid. In this work, aCaO sorbent produced by template synthesis was studied as a sorbent for a CO2 looping system under RF heating which offers short start-up times, highly controlled operation, high degree of robustness and low price. The sorbent reached its stable CO2 capacity of 15.4 wt.% already after 10 temperature cycles (650/850 o C) under RF heating. Higher CO2 desorption rate and lower degree of the sorbent sintering was observed under RF heating as compared to conventional heating.2