Various porous polymer materials have been prepared for the separation of CO2 from mixed gases. However, complex processes, expensive monomers, and costly catalysts are commonly used for their synthesis, making the adsorbents difficult to achieve in industrial applications. Herein, we developed a strategy to fabricate a series of benzene rings containing porous polymer materials (B-PPMs) via a facile condensation reaction of two inexpensive monomers, namely tetraphenylsilane and 1,4-bis(bromomethyl)benzene. The B-PPMs are verified to have accessible surface areas, large pore volumes, and appreciate pore sizes via a series of characterizations. The B-PPM-2 exhibits the best CO2 adsorption amount of 67 cm3·g−1 at 273 K and 1 bar, while the CO2/N2 selectivity can reach 64.5 and 51.9 at 273 K and 298 K, respectively. Furthermore, the adsorbent B-PPM-2 can be completely regenerated after five cycles of breakthrough experiments under mild conditions, which may provide promising candidates for selective capture of CO2 from mixtures.