2021
DOI: 10.3390/app112412119
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced Collaborative Filtering for Personalized E-Government Recommendation

Abstract: The problems with the information overload of e-government websites have been a big obstacle for users to make decisions. One promising approach to solve this problem is to deploy an intelligent recommendation system on e-government platforms. Collaborative filtering (CF) has shown its superiority by characterizing both items and users by the latent features inferred from the user–item interaction matrix. A fundamental challenge is to enhance the expression of the user or/and item embedding latent features fro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
2
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 38 publications
0
2
0
2
Order By: Relevance
“…The latter case does require jobs to be categorized, such that they can serve as discrete items in the rating matrix. For simplicity, we will refer to the entries in the rating matrix as ratings, irrespective of the exact type of behavioral feedback (e.g., [14,15]).…”
Section: Recommender Systems Methodsmentioning
confidence: 99%
“…The latter case does require jobs to be categorized, such that they can serve as discrete items in the rating matrix. For simplicity, we will refer to the entries in the rating matrix as ratings, irrespective of the exact type of behavioral feedback (e.g., [14,15]).…”
Section: Recommender Systems Methodsmentioning
confidence: 99%
“…In the same spirit of democratizing access to online resources for the population, in [9], the authors propose Negative-items Mixed Collaborative Filtering (NMCF), a method to improve accessibility to e-government resources. By emphasizing the learning of positive items' latent features, the system is able to outperform the state-of-the-art algorithms on a real e-government dataset.…”
Section: Recommender Systems In Actionmentioning
confidence: 99%
“…As ondas de transformação digital que tem informatizado serviços públicos em Governos de todo o mundo cria um cenário de sobrecarga informacional para cidadãos e empresas, que, diante de processos de caráter naturalmente burocráticos, enfrentam dificuldades práticas no acesso e realização desses serviços [Sun et al, 2021]. Sistemas de recomendação podem, nesse cenário, se tornar ferramentas efetivas que ajudam a disponibilizar aos usuários os serviços públicos de que realmente necessitam.…”
Section: Sistemas De Recomendação Para Governounclassified
“…[Ayachi et al, 2016] também propõem um arcabouço conceitual para recomendação de serviços governamentais, usando como exemplo o portal de serviços do Governo de Quebec 1 , em que serviços personalizados são ofertados aos cidadãos autenticados com base em diferentes fontes de dados. Mais recentemente, [Sun et al, 2021] apresentaram uma nova técnica de recomendação de serviços de governo (distrito de Wuhou -Chengdu, China) que leva em consideração as interações negativas dos usuários em filtragem colaborativa.…”
Section: Sistemas De Recomendação Para Governounclassified