BackgroundSocial media opinion has become a medium to quickly access large, valuable, and rich details of information on any subject matter within a short period. Twitter being a social microblog site, generate over 330 million tweets monthly across different countries. Analyzing trending topics on Twitter presents opportunities to extract meaningful insight into different opinions on various issues.AimThis study aims to gain insights into the trending yahoo-yahoo topic on Twitter using content analysis of selected historical tweets.MethodologyThe widgets and workflow engine in the Orange Data mining toolbox were employed for all the text mining tasks. 5500 tweets were collected from Twitter using the 'yahoo yahoo' hashtag. The corpus was pre-processed using a pre-trained tweet tokenizer, Valence Aware Dictionary for Sentiment Reasoning (VADER) was used for the sentiment and opinion mining, Latent Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI) was used for topic modeling. In contrast, Multidimensional scaling (MDS) was used to visualize the modeled topics. ResultsResults showed that "yahoo" appeared in the corpus 9555 times, 175 unique tweets were returned after duplicate removal. Contrary to expectation, Spain had the highest number of participants tweeting on the 'yahoo yahoo' topic within the period. The result of Vader sentiment analysis returned 35.85%, 24.53%, 15.09%, and 24.53%, negative, neutral, no-zone, and positive sentiment tweets, respectively. The word yahoo was highly representative of the LDA topics 1, 3, 4, 6, and LSI topic 1.ConclusionIt can be concluded that emojis are even more representative of the sentiments in tweets faster than the textual contents. Also, despite popular belief, a significant number of youths regard cybercrime as a detriment to society.