A new approach for analytically solving quantum nonlinear Langevin equations is proposed and applied to calculations of spectra of superradiant lasers where collective effects play an important role. We calculate lasing spectra for arbitrary pump rates and recover well-known results such as the pump dependence of the laser linewidth across the threshold region. We predict new sideband peaks in the spectrum of superradiant lasers with large relaxation oscillations as well as new nonlinear structures in the lasing spectra for weak pump rates. Our approach sheds new light on the importance of population fluctuations in the narrowing of the laser linewidth, in the structure of the lasing spectrum, and in the transition to coherent operation.