2022
DOI: 10.1039/d2nj01425d
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced dielectric properties of PVDF-based composite film with BaTiO3@SrTiO3nanoparticles

Abstract: A new ceramic/polymer composite based on BaTiO3@SrTiO3 (BT@ST) nanoparticles and Polyvinylidene fluoride (PVDF) had been prepared. It was proved that the BaTiO3@SrTiO3 nanoparticles were dispersed in the polymer matrix by...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
4
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 47 publications
0
4
0
2
Order By: Relevance
“…Komposisi Filler Konstanta dielektrik 1 Guo et al [62] BaTiO3 3 wt% 12,9 (1 kHz) 2 Mendez et al [64] (β -PVDF) -11 (500 Hz) 3 Wang et al [65] BaTiO3 1% vol 10,1 (1 kHz) 4 Shi et al [66] BaTiO3 40,6% vol 87 ( 1 kHz) 5 Lu et al [67] BaTiO3 30% vol 16,4 (100 Hz) 6 Wittinanon et al [68] BZT 40% vol 300 (100 Hz) 7 Wittinanon et al [68] BZT 50% vol 350 (100 Hz) 8 Wittinanon et al [68] BZT 60% vol 470 (100 Hz) 9 Maity et al [69] BST 60 wt% 30 (1 kHz) 10 Liu et al [70] BST 2,5% vol 13 (100 Hz) 11 Laasri et al [60] BaTiO3 30% vol 35 (100 Hz) 12 Gong et al [71] Graphine Oxide-BaTiO3 1 wt% 61 (100 Hz) 13 Song et al [72] BaTiO3 nanofiber (BTNf) 6,7% vol 18 (10 kHz) 14 Panda et al [36] BaTiO3 0,6 (frac) 400 (10 Hz) 15 Rosso et al [73] BTNN 0,6 (frac) 110 (1 kHz) 16 Rosso et al [73] PZT 0,68 (frac) 150 (1 kHz) 17 Silakaew et al [74] Ag@mBT 0,49 (frac) 173,49 (1 kHz) 18 Celebi et al [75] BaTiO3 @SiO2 10% vol 24,8 (100 Hz) 19 Jaschin et al [76] LaNiO3 BaTiO3 LN = 0.09,BT = 0.20(frac) 90 (10 kHz) 20 Liu et al [77] BTnfs -Ag 2,5% vol 105 (100 Hz) 21 Zhao et al [78] BaTiO3, SrTiO3 20% vol 42,5 (100 Hz)…”
Section: No Paper Fillermentioning
confidence: 99%
See 1 more Smart Citation
“…Komposisi Filler Konstanta dielektrik 1 Guo et al [62] BaTiO3 3 wt% 12,9 (1 kHz) 2 Mendez et al [64] (β -PVDF) -11 (500 Hz) 3 Wang et al [65] BaTiO3 1% vol 10,1 (1 kHz) 4 Shi et al [66] BaTiO3 40,6% vol 87 ( 1 kHz) 5 Lu et al [67] BaTiO3 30% vol 16,4 (100 Hz) 6 Wittinanon et al [68] BZT 40% vol 300 (100 Hz) 7 Wittinanon et al [68] BZT 50% vol 350 (100 Hz) 8 Wittinanon et al [68] BZT 60% vol 470 (100 Hz) 9 Maity et al [69] BST 60 wt% 30 (1 kHz) 10 Liu et al [70] BST 2,5% vol 13 (100 Hz) 11 Laasri et al [60] BaTiO3 30% vol 35 (100 Hz) 12 Gong et al [71] Graphine Oxide-BaTiO3 1 wt% 61 (100 Hz) 13 Song et al [72] BaTiO3 nanofiber (BTNf) 6,7% vol 18 (10 kHz) 14 Panda et al [36] BaTiO3 0,6 (frac) 400 (10 Hz) 15 Rosso et al [73] BTNN 0,6 (frac) 110 (1 kHz) 16 Rosso et al [73] PZT 0,68 (frac) 150 (1 kHz) 17 Silakaew et al [74] Ag@mBT 0,49 (frac) 173,49 (1 kHz) 18 Celebi et al [75] BaTiO3 @SiO2 10% vol 24,8 (100 Hz) 19 Jaschin et al [76] LaNiO3 BaTiO3 LN = 0.09,BT = 0.20(frac) 90 (10 kHz) 20 Liu et al [77] BTnfs -Ag 2,5% vol 105 (100 Hz) 21 Zhao et al [78] BaTiO3, SrTiO3 20% vol 42,5 (100 Hz)…”
Section: No Paper Fillermentioning
confidence: 99%
“…Hal lainnya juga terlihat dari laporan Maity et al dan Liu et al pada komposit PVDF/BST dengan kenaikan komposisi filler BST menyebabkan kenaikan konstanta dielektrik [69][70] . Dari ketiga variasi komposit PVDF/BaTiO3, PVDF/BZT dan PVDF/BST dapat disimpulkan bahwa filler bebasis material oxide dari komposit PVDF sangat berpengaruh terhadap kenaikan nilai kontanta dielektrik dibandingkan dengan nilai karakteristik dari PVDF sendiri dan juga didapatkan bahwa konstanta dielektrik komposit PVDF/BaTiO3 tidak lebih besar dari konstanta dielektrik BaTiO3 [71][72][73][74][75][76][77][78] .…”
Section: No Paper Fillerunclassified
“…1−3 To obtain low-cost, easy-to-process, and highperformance dielectric materials, poly(vinylidene fluoride) (PVDF) is often combined with high dielectric constant fillers to obtain composite materials with superior dielectric properties. 4,5 The fillers of PVDF dielectric composites mainly involve the ceramics, conductors, and organic compounds. Most of the ceramic fillers have high dielectric constant, such as barium titanate (BT) and barium strontium titanate (BST).…”
Section: Introductionmentioning
confidence: 99%
“…With the rapid development of electrical and electronic products to the direction of high integration, large scale, portability, and high performance, traditional dielectric materials can no longer meet the requirements of the modern industry. To obtain low-cost, easy-to-process, and high-performance dielectric materials, poly­(vinylidene fluoride) (PVDF) is often combined with high dielectric constant fillers to obtain composite materials with superior dielectric properties. , The fillers of PVDF dielectric composites mainly involve the ceramics, conductors, and organic compounds. Most of the ceramic fillers have high dielectric constant, such as barium titanate (BT) and barium strontium titanate (BST). , The addition of ceramic particles can greatly improve the dielectric constant of the composite system, but the incompatibility of ceramic fillers with the matrix and the defects generated in the sintering process will affect the dispersion of fillers in the matrix and cause great dielectric loss.…”
Section: Introductionmentioning
confidence: 99%
“…Due to their virtues of being light weight, easy processability and flexibility, high permittivity polymer dielectric materials have drawn considerable attention for potential applications in advanced dielectric capacitors, integrated circuit dielectrics and electromagnetic interface shielding. 1–6 Unfortunately, the application of polymer dielectric materials in the field of compact-size electronic devices and severe environments is restricted by their inferior energy densities and poor operating temperatures. 1,6,7 For instance, the energy density of commercial biaxially-oriented polypropylene (BOPP) is usually below 2.0 J cm −3 because of its low permittivity.…”
mentioning
confidence: 99%