In lithium-ion batteries, Si-based materials such as silicon alloys are regarded as a promising alternative to graphite negative electrode to achieve higher energy. Unfortunately, they often suffer from a large volume change that can result in poor cycle life. We monitored the electrode expansion/contraction that occurs during lithiation/delithiation in real time by electrochemical dilatometry. Volume changes of Si alloy-based electrode with three different polymer binders have been compared. Electrode manufactured with lithiated polyacrylic acid (LiPAA) exhibited the greatest expansion but also demonstrated the highest reversibility as well as the best cycling performance. Ex situ SEM imaging along with dilatometer measurements revealed that electrode porosity after contraction (delithiation) increases compared to that after precedent expansion (lithiation), which can buffer volume expansion at the subsequent cycle. Proof-of-concept in situ optical microscopy (IOM) experiments were carried out with the best performing LiPAA electrode. The results demonstrated that LiPAA electrode in the IOM cell expanded much less than the same electrode in the dilatometer cell. This implies that internal pressure existing in a lithium-ion cell has a great impact on total electrode expansion.