The incorporation of different functional fillers has been widely used to improve the properties of polymeric materials. The polyhydroxy structure of PVA with excellent film-forming ability can be easily combined with organic/inorganic multifunctional compounds, and such an interesting combining phenomenon can create a variety of functional materials in the field of materials science. The composite membrane material obtained by combining MOF material with high porosity, specific surface area, and adjustable structure with PVA, a non-toxic and low-cost polymer material with good solubility and biodegradability, can combine the processability of PVA with the excellent performance of porous filler MOFs, solving the problem that the poor machinability of MOFs and the difficulty of recycling limit the practical application of powdered MOFs and improving the physicochemical properties of PVA, maximizing the advantages of the material to develop a wider range of applications. Firstly, we systematically summarize the preparation of MOF/PVA composite membrane materials using solution casting, electrostatic spinning, and other different methods for such excellent properties, in addition to discussing in detail the various applications of MOF/PVA composite membranes in water treatment, sensing, air purification, separation, antibacterials, and so on. Finally, we conclude with a discussion of the difficulties that need to be overcome during the film formation process to affect the performance of the composite film and offer encouraging solutions.