As energy demand continues to increase, so too do anthropogenic carbon emissions and global temperatures. Renewable energy sources such as solar, wind and hydroelectricity displace fossil fuel carbon emissions and continue to progress to wider deployment. However, long-term (seasonal) energy storage remains a challenge that must be addressed for renewables to meet a major fraction of global energy demand 1 . Carbon dioxide electroreduction to renewable fuels and feedstocks provides an energy storage solution to the seasonal variability of renewable energy sources 2 . When coupled with carbon capture technology, the carbon dioxide reduction reaction (CO 2 RR) offers a means to close the carbon cycle.CO 2 RR electrocatalysts lower energetic barriers to CO 2 reduction by stabilizing intermediates and transition states in the multistep electrochemical reduction process 3 . Copper reduces CO 2 to a wide range of hydrocarbon products such as methane, ethylene, ethanol and propanol 4 . Unfortunately, bulk copper is not selective among various carbon products, and it also suffers Faradaic efficiency (FE) losses to the competing hydrogen evolution reaction.Among possible products, C2+ hydrocarbons are highly sought in view of their commercial value. Ethylene, for example, is a precursor to the production of polyethylene, a major plastic. Selectively producing ethylene over methane circumvents costly paraffin-olefin separation 5 . Developing catalysts that work at ambient conditions to produce C2 selectively over C1 gaseous products will increase the relevance of renewable feedstocks in the chemical sector.Oxide-derived copper is one class of catalyst that has shown enhanced CO 2 RR activity and increased selectivity towards multi-carbon products [6][7][8] . The selectivity of these catalysts is dependent on structural morphology and copper oxidation state 9-17 . Electrochemical reduction of copper oxide catalyst films can lead to grain boundaries, undercoordinated sites and roughened surfaces that are hypothesized to be catalytically active sites 8,18 . Residual oxides, proposed to play a key role in catalysis, may exist after electrochemical reduction 7 . A recent report of oxygen plasma-activated oxide-derived copper catalysts achieved an ethylene FE of 60% at − 0.9 V versus reversible hydrogen electrode (RHE) 9 , with activity attributed to the presence of Cu + species. In situ hard X-ray absorption spectroscopy (hXAS) experiments have suggested stable Cu + species exist at highly negative CO 2 RR potentials of ~− 1.0 versus RHE 9 . However, the presence of Cu + species during CO 2 RR is still the subject of debate; 7,19 and in situ tracking of the copper oxidation state with time resolution during CO 2 RR has remained elusive.Morphological effects of copper nanostructures have a significant effect on the selectivity of CO 2 RR to multi-carbon products [20][21][22][23][24] . Copper catalysts with different morphologies have been synthesized through annealing, chemical treatments on thin films, colloidal synthesis and ...