The effect of silica polymorphs on the thermomechanical properties of 0, 5, 10, and 20 wt % silica particles-reinforced-based poly(ethylene glycol) (PEG) composites have been studied as a function of temperature using dynamic mechanical analysis (DMA). The silica polymorphs exhibited quartz (Q), cristobalite (C), and amorphous (A) phases, which were obtained by processing natural silica sand. The DMA thermomechanical properties were determined in tensile (E) and shear (G) modes. The maximum storage moduli (E 0 and G 0 ) were achieved by samples with 20 wt % silica for all type of fillers. These values increased approximately 12 times for PEG/Q, 10 times for PEG/A, and 11 times for PEG/C composites compared to the pure PEG. Furthermore, the Poisson's ratio values of the composites were filler phase dependent, that is, 0.39-0.47 for PEG/Q, 0.15-0.18 for PEG/A, and somewhat anomalous for PEG/C composites.