Organic and printed electronics integration has the potential to revolutionise many technologies, including biomedical diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device capable of the measurement of hydrogen peroxide, and total cholesterol. The single-use device employed printed electrochemical sensors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a conventional electronic circuit designed to illustrate the complete integration of silicon ICs via pick and place, or using organic electronic circuits. The device was capable of measuring 8 µL samples of both hydrogen peroxide (0 to 5 mM, 2.72×10 -6 A.mM -1 ) and total cholesterol in serum from 0 to 9 mM (1.34×10 -8 A.mM -1 , r 2 =0.99, RSD <10%, n=3) which was output on a semi-quantitative linear bar display. The device could operate for 10 minutes via a printed battery and display the result for many hours or days. A mobile phone 'app' was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology could allow improved management of conditions such as hypercholesterolemia.Printed electronics is being hailed as a technological revolution, equal in importance to the emergence of microelectronics over 50 years ago. The combined qualities of print-processable organic, inorganic and hybrid (semi)conductive materials which can be deposited onto flexible polymeric substrates using a range of additive, high throughput printing methodologies offer the prospect of low cost mass production capability and the potential for unprecedented levels of technological integration.