2019
DOI: 10.1016/j.jeurceramsoc.2018.11.025
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
37
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 208 publications
(40 citation statements)
references
References 33 publications
1
37
0
2
Order By: Relevance
“…The dielectric properties of BT-Bi(Me Me")O 3 -based ceramics have been widely investigated to acquire deeper understanding, including the relationship of relative dielectric permittivity (ε r ) and the component Bi(Me Me")O 3 endmember. Several previous studies show that the phase transition peaks became broader and smeared with increasing Bi(Me Me")O 3 substitutions in BT-Bi(Me Me")O 3 solid solutions, leading to the enhancement of thermal stability [23,24,27,28]. Figure 3a-e shows the temperature dependence of dielectric permittivity (ε r ) and loss (tanδ) for (1−x)SBT-xBMZ ceramics.…”
Section: Dielectric and Energy-storage Characterizations For (1−x)sbtmentioning
confidence: 89%
See 1 more Smart Citation
“…The dielectric properties of BT-Bi(Me Me")O 3 -based ceramics have been widely investigated to acquire deeper understanding, including the relationship of relative dielectric permittivity (ε r ) and the component Bi(Me Me")O 3 endmember. Several previous studies show that the phase transition peaks became broader and smeared with increasing Bi(Me Me")O 3 substitutions in BT-Bi(Me Me")O 3 solid solutions, leading to the enhancement of thermal stability [23,24,27,28]. Figure 3a-e shows the temperature dependence of dielectric permittivity (ε r ) and loss (tanδ) for (1−x)SBT-xBMZ ceramics.…”
Section: Dielectric and Energy-storage Characterizations For (1−x)sbtmentioning
confidence: 89%
“…Based on the unique relaxor characteristic of Bi-based compound, in order to improve the temperature stability and energy storage density, numerous Bi(Me Me")O 3 (Me = Mg 2+ , Zn 2+ ; Me" = Ti 4+ , Nb 5+ , et al) endmembers have been attempted for dielectric solid solutions. For example, BaTiO 3 -Bi(Me Me")O 3 ceramics transfer from typical ferroelectric to relaxor with increasing Bi(Me Me")O 3 concentration, showing improved temperature stability, low dielectric loss, as well as improved energy efficiency [9,[19][20][21][22][23]. Among these solid solutions, 0.7BaTiO 3 -0.3Bi(Mg 0.5 Zr 0.5 )O 3 was found to exhibit high stability over a wide temperature range from −20 • C to 430 • C with low permittivity variation (< ±15%) and relatively low loss (~2%) [24].…”
Section: Introductionmentioning
confidence: 99%
“…Figure 5B shows a graph comparing the discharge energy density and energy efficiency results of the present investigation with previous literature. 14,16,23,[25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40] The graph ( Figure 5B) suggests that the optimized material (ie, BN9) lies in the category of high energy density materials with moderate energy efficiency. It should be noted that there always exists some contradiction in designing a lead-free energy storage ceramic material.…”
Section: Ferroelectric Studymentioning
confidence: 99%
“…钛酸钡(BaTiO 3 )是一种典型的 ABO 3 型钙钛矿 结构的铁电体材料, 因其优良的介电、压电以及铁 电性能 [1] 被广泛应用于多层陶瓷电容器 [2] , 铁电存 储器 [3] , 传感器及非线性电光器件等 [4][5] 。BaTiO 3 (BT)陶瓷介电常数(ε r )非常高, 室温为 1500~2000 ℃, 在居里温度(T C )附近高达 10000 ℃以上 [6] , ε r 与温度 呈非线性关系, 导致 ε r 随温度变化率较大, 此外 ε r 对电场、频率和压力等条件变化也非常敏感。BT 陶瓷介电损耗(tanδ >0.05)相对较高。 BT 陶瓷饱和极 化强度值(P s >27 μC/cm 2 )高 [7] , 而剩余极化强度值 (P r > 14.7 μC/cm 2 )也很高 [8] 。 BT 陶瓷击穿电场(BDS< 100 kV/cm)较低 [9] 。 高 ε r 和大 P s 使 BT 陶瓷成为一种非常有潜力的 无铅陶瓷储能电容器材料 [10][11][12] , 可应用于激光脉冲 武器和混合电动车等领域 [13][14][15][16][17][18][19] 。但高 P r 和低 BDS 导致 BT 陶瓷储能性能并不良好 [20][21][22] 。近年来许多 研究人员尝试在 BT 的 A 位和 B 位引入离子合成 BT 基弛豫铁电体陶瓷从而降低 P r : Huang 等 [23] 用 Sol-Gel 法合成 Ba 0.4 Sr 0.6 TiO 3 陶瓷, 在 240 kV/cm 电 场 强 度 下 获 得 1.23 J/cm 3 能 量 存 储 密 度 (W), 和 94.52%能量存储效率(η)。Puli 等 [24] 用固相法制备 0.85Ba(Zr 0.2 Ti 0.8 )O 3 -0.15(Ba 0.7 Ca 0.3 )TiO 3 陶 瓷 , 在 170 kV/cm 下获得 0.94 J/cm 3 的 W 和 94.52 %的 η。 Sun 等 [25] 用固相法合成 Ba 1-x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 陶瓷, 当 x=0.003 获得 1.15 J/cm 3 可释放能量密度(W rec )和 92%的 η。 此外, 在 BT 中加入 Bi 基化合物合成 BT-Bi 基弛豫铁电体陶瓷成为近几年研究热点: Wang 等 [26]…”
unclassified
“…为了提高 BT 基陶瓷 BDS, 许多研究人员在 BT 基或 BT-Bi 基陶瓷中添加玻璃来提高致密度, 同时 达到降低烧结温度的效果。 Wang 等 [30] 在 BT 陶瓷中 添加 BaO-SrO-TiO 2 -Al 2 O 3 -SiO 2 -BaF 2 玻璃, 当玻璃 添加量为 7wt%, BDS 提高到 94.6 kV/cm, 获得 0.32 J/cm 3 的 W rec 。Wang 等 [31] 在 Ba 0.4 Sr 0.6 TiO 3 陶瓷 中添加 BaO-B 2 O 3 -SiO 2 -Na 2 CO 3 -K 2 CO 3 玻璃, BDS 提 高到 280.5 kV/cm, 获得 0.72 J/cm 3 的 W rec 。 Yang 等 [32] 在 Ba 0. 4 [36] 是一种典型低温烧结微波介质陶瓷。 Wang 等 [37] 用固相法合成 BaTiO 3 -ZnNb 2 O 6 (BT-ZN) 陶瓷, 结果表明添加 ZN 显著降低 BT 陶瓷烧结温 度。Yan 等 [38] 和 Yang 等 [39] [3] , 而 ZN 陶瓷烧结温度仅有 1150 ℃ [36] , 说明添加 ZN 有效降低了 BTZN 陶瓷烧 结温度。而最佳烧结温度下 BTZN 陶瓷密度随 ZN 含量增加从 5.808 g/cm 3 (BTZN1)降低到 5.701 g/cm 3 (BTZN6), 主要由于 ZN 陶瓷的理论密度(5.645 g/cm 3 ) 比 BT 陶瓷(6.018 g/cm 3 )低 [37]…”
unclassified