[Aim of the study: This research endeavors to optimize cardiac anomaly detection by introducing a method focused on selecting the most effective Daubechis wavelet families. The principal aim is to differentiate between cardiac states that are normal and abnormal by utilising longer electrocardiogram (ECG) signal events based on Apnea ECG dataset. Apnea ECG is often used for the detection of sleep apnea, a sleep disorder characterized by repeated interruptions in breathing during sleep. By using machine learning methods, such as Principal Component Analysis (PCA) and different classifiers, the goal is to improve the precision of cardiac irregularity identification.
Used method: In order to extract important statistical and sub-band information from lengthy ECG signal episodes, the study uses a novel method that combines discrete wavelet transform with Principal Component Analysis (PCA) for dimension reduction. The methodology focuses on successfully categorising ECG signals by utilising several classifiers, including multilayer perceptron (MLP) neural network, Ensemble Subspace K-Nearest Neighbour(KNN), and Ensemble Bagged Trees, together with varied Daubechis wavelet families (db2, db3, db4, db5, db6).
Brief Description of Results: The results emphasise the importance of the chosen Daubechis wavelet family, db5, and its superiority in ECG representation. The method distinguishes normal and abnormal ECG signals well on the Physionet Apnea ECG database. The Neural Network-based method accurately recognises 100% of healthy signals and 97.8% of problematic ones with 98.6% accuracy.
Findings: The Ensemble Subspace K-Nearest Neighbour (KNN) and Ensemble Bagged Trees methods got 87.1% accuracy and 0.89 and 0.87 AOC curve values on this dataset, showing that the method works. Precision values of 0.96, 0.86, and 0.86 for MLP Neural Network, KNN Subspace, and Ensemble Bagged Trees confirm their robustness. These findings suggest that wavelet families and machine learning can improve cardiac abnormality detection and categorization.]