In the past decade the importance of the vascular endothelium as a multifunctional regulator of vascular smooth muscle physiology and pathophysiology has been appreciated. Indeed, the endothelium responds to hemodynamic stimuli (pressure, shear stress, and wall strain) and locally manufactured mediators (such as bradykinin, prostaglandins, and angiotensin) and in turn can release factors that can influence the adhesion and aggregation of circulating cells to the endothelium and the tone of vascular smooth muscle. In many diseases, including atherosclerosis, diabetes or cirrhosis endothelial dysfunction manifested as an impairment nitric oxide (NO) production or bioactivity may be an early hallmark of disease and a treatable entity. In this chapter, the importance of NO as a mediator of vascular function and potential mechanisms of endothelial NO synthase (eNOS) activation in disease will be discussed.
Regulation of vascular tone by endogenous NOeNOS is the NOS isoform responsible for producing the classical endothelium-derived relaxing factor as originally described by (Furchgott & Zawadski 1981). Evidence for the importance of eNOS derived NO in the regulation of vascular tone is based on experiments in animals and in humans demonstrating that L-arginine based inhibitors of NOS increase blood or perfusion pressure and vascular resistance and reduce blood flow in vivo and in vitro. More recently, this has been unequivocally confirmed using mice with targeted disruption of the eNOS gene locus. eNOS knockout mice (-/-) are mildly hypertensive relative to wild-type littermate control mice (+/+) of the same generation. Importantly, the pressor effect of nitro-L-arginine, a NOS inhibi- tor, is attenuated in the -/-mice and endothelium-dependent relaxation in response to acetylcholine is abrogated in isolated vessels (Huang et al. 1995, Shesely et al. 1996. This fundamental finding is direct "proof of-principal" for the major contribution of NO in vasomotor control in large blood vessels.
Physiological activation of eNOS and NO releaseTypically, endothelial cells release NO in response to autacoids that mobilize intracellular calcium such as thrombin, VEGF or ADP. The proposed mechanism for eNOS activation is that the released calcium will bind to calmodulin (CaM) and the calcium/CaM complex will bind to the CaM site in the enzyme promote NO synthesis. However, the most physiological agonist for NO release is fluid shear stress. Shear stress in vitro or shear rate in vivo, is the tangential vector of force elicited by the flow of blood over the endothelial cell surface. Exposure of endothelial cells to shear stress results in a burst of NO release, followed by a sustained phase. In vivo, increasing shear rate due to high blood flow will cause flow dependent dilations of certain vascular beds while decreasing shear rate will promote vasoconstriction. Shear induced NO release in vitro and flow-dependent vasodilation in vivo can be blocked with NOS inhibitors. Interestingly, shearinduced NO release appears to "independen...