The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch-and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue.GsMTx-4 peptide ͉ mechanosensitivity ͉ tarantula venom ͉ myogenic tone ͉ calcium signals T he superfamily of TRP cation channels transduce a remarkable spectrum of signals ranging from small secondmessenger molecules to physical parameters including temperature, osmolarity, and touch (1, 2). Among the several subfamilies of TRP channels, the TRPC nonselective cation channels activated in response to PLC-coupled receptors are widely expressed among tissues (2, 3). The closely related subgroup comprising TRPC3, TRPC6, and TRPC7 channels are directly activated by diacylglycerol through a PKC-independent mechanism (3, 4). TRPC6 channels are highly expressed in a number of different tissues including vascular smooth muscle cells (5-8). Despite their abundance, the exact physiological role of TRPC6 channels has not been elucidated. Recently it has been suggested that TRPC6 channels are involved in hemodynamic regulation (6, 9) and may play a role in generating myogenic tone in response to intravascular pressure in arteries (6, 9). This is a key mechanism to control blood flow in arteries and arterioles (10, 11) involving depolarization, activation of Ca 2ϩ entry, and the contraction of vascular smooth muscle cells (11). Increases in Ca 2ϩ in response to pressure not only activate smooth muscle cell contraction but also modify their growth and differentiation (12). However, the identity and gating mechanisms of the mechanical sensors that mediate the depolarizing response have not been identified.TRPC6 channels are expressed predominantly in cells responding to hydrostatic pressure changes including vascular smooth muscle and glomerular podocytes and have been implicated in mediating pressure-induced responses (6, 13). TRPC6 channels mediate receptor-induced depolarization in smooth muscle cells (7,9), and opening of the related TRPC1 channel has been shown to be activated by stretch (14). In addition to being implicated in ...