In vehicular communication networks, to facilitate the variety of intelligent transportation system (ITS) applications, handover management is considered as the one of the most challenging research issues. The most compatible and interoperable handover management solutions are designed based on IP mobility protocols. However, due to the unique characteristics of vehicles such as high velocity, IP mobility management protocols are still unacceptable for ITS real-time applications that are sensitive to network latencies. Thus, whenever the vehicle roams between two domains, which is most likely to occur in vehicular networks, its reachability status will be broken-down causing high handover latency and inevitable traffic loss. Recently, proxy mobile IPv6 (PMIPv6) has been proposed to support the mobility management without any intervention of the mobile user in the mobility-related signaling. As PMIPv6 will be deployed in the wireless technologies for next generation networks (i.e., LTE/LTE-advanced, WiFi and WiMAX), vehicular ad hoc networks (VANETs) are expected to employ PMIPv6 protocol in vehicle to infrastructure connection as well. In this paper, we introduce a comprehensive review of the state of the art of PMIPv6 handover management in VANET. We present a new taxonomy and classify the existing schemes according to different considerations. Finally, we outline several open issues and handoff management design considerations as a direction for future research.