Both high pyroelectric properties and good temperature stability of ferroelectric materials are desirable when used for applications in infrared thermal detectors. In this work, we report lead-free ternary 0.97(0.99Bi0.5Na0.5TiO3-0.01BiAlO3)-0.03K0.5Na0.5NbO3 (BNT-BA-KNN) ceramics, which not only exhibits a large pyroelectric coefficient (p ∼ 3.7 × 10−8 C cm−2 K−1) and figures of merit (Fi, Fv, and Fd) but also shows excellent thermal stable properties. At room temperature, Fi, Fv, and Fd are determined as high as 1.32 × 10−10 m/V, 2.89 × 10−2 m2/C, and 1.15 × 10−5 Pa−1/2 at 1 kHz and 1.32 × 10−10 m/V, 2.70 × 10−2 m2/C, and 1.09 × 10−5 Pa−1/2 at 20 Hz, respectively. During the temperature range of RT to 85 °C, the achieved p, Fi, Fv, and Fd do not vary too much. The high depolarization temperature and the undispersed ferroelectric-ergodic relaxor phase transition with a sharp pyroelectric coefficient peak value of ∼400 × 10−8 C cm−2 K−1 are suggested to be responsible for this thermal stability, which ensures reliable actual operation. The results reveal the BNT-BA-KNN ceramics as promising lead-free candidates for infrared thermal detector applications.